목록Tips (Utility, Computer Language, and etc.) (201)
감동, 마음이 움직이는 것
http://gnuplot-surprising.blogspot.de/2011/10/add-value-labels-to-top-of-bars-in-bar.html
set terminal svg enhanced background rgb 'white'위는 배경색을 바꿔 주는 옵션이다. 만약 이게 안되는 버전이라면 아래와 같이 사각형을 그림뒤 (behind)에 그려주면 된다.set object rectangle from screen 0,0 to screen 1,1 behind fillcolor rgb 'white' fillstyle solid noborder screen을 사용하면 그림 전체 배경색을 바꾸고graph를 사용하면 프레임안의 배경색만 바뀐다. [screen, first, graph의 차이는 다음을 참고: http://folk.uio.no/hpl/scripting/doc/gnuplot/Kawano/label2-e.html]배경색을 함수로 줘서 그라데이션을 ..
1. 기본사용for i in {...} #or for ((j=0; j
http://apple.stackexchange.com/questions/60741/how-can-i-kill-a-process-using-top-on-os-x
http://macnews.tistory.com/3860
http://macnews.tistory.com/162http://emflant.tistory.com/177
Finally, I got my new Mac. This is my first experience for Mac os, so everything is not familiar with me. All the thing are really uncomfortable and difficult to set on my style.I think many persons also experience the same things of mine. So, I write this for other new Mac users and me for the future. ========================================================================You can change your co..
(참고)http://www.manpagez.com/info/gnuplot/gnuplot-4.4.3/gnuplot_146.php#rgbimagehttp://gnuplot.sourceforge.net/demo/image.htmlhttp://gnuplot-surprising.blogspot.de/2011/09/gnuplot-background-image.htmlhttp://www.techrepublic.com/blog/linux-and-open-source/how-to-use-clip-art-in-your-gnuplot-charts/http://www.gnuplot.info/docs_4.2/gnuplot.html#x1-25400043.59.8.11 ==================================..
n-sphere [https://en.wikipedia.org/wiki/N-sphere]Spherical coordinatesWe may define a coordinate system in an n-dimensional Euclidean space which is analogous to the spherical coordinate system defined for 3-dimensional Euclidean space, in which the coordinates consist of a radial coordinate, {\displaystyle r\,,} and n − 1 angular coordinates {\displaystyle \phi _{1},\phi _{2},\dots ,\phi _{n-1}..
[Ref] =================================================================Most helpul explanation is https://sepwww.stanford.edu/sep/prof/bei/fdm/paper_html/node16.htmland https://www.quantstart.com/articles/Solving-the-Diffusion-Equation-Explicitlyhttps://www.quantstart.com/articles/Crank-Nicholson-Implicit-Schemehttps://www.quantstart.com/articles/Tridiagonal-Matrix-Algorithm-Thomashttps://www.qu..